IoT Data Analytics using Python

(DA-PYTHON.AW1) / ISBN : 978-1-64459-683-8
Lessons
Lab
TestPrep
AI Tutor (Add-on)
Get A Free Trial

About This Course

Skills You’ll Get

1

Preface

2

Necessity of Analytics Across IoT

  • Introduction
  • Internet of Things and Industrial Internet of Things 
  • Industrial Revolution and Industry 4.0
  • IoT Data Analytics
  • IoT Data Analytics for Digital Transformation
  • Hardware Devices for IoT Data Analytics
  • Data Pipeline for Analytics
  • Python: The Go-to Language for Analytics
  • Conclusion
  • Points to Remember
3

Up and Running with Data Analytics Fundamentals

  • Introduction
  • Data Analysis Methods and Frameworks
  • How to Perform Data Analysis
  • Conclusion
  • Points to Remember
4

Setting Up IoT Analytics Environment

  • Introduction
  • Why Python Language
  • Installation and Configuration of Python IDE
  • Installation and Configuration of Apache Kafka
  • Installation and Configuration of MQTT
  • Installation and Configuration of PostgresSQL
  • Important Python Packages Used
  • Basics of Python Language with Examples
  • Data Analysis using Python
  • Data Wrangling with Python
  • Data Visualization using Python
  • Conclusion
  • Points to Remember
5

Managing Data Pipeline and Cleaning

  • Introduction
  • IoT Data Formats
  • Realtime Streaming and Data Pipeline
  • IoT Dataflow
  • Data Simulation and Digital Twin
  • Data Simulation
  • Digital Twin
  • IoT Simulator Tools
  • IoT Data Simulator Python Implementation
  • Data Cleansing Implementation in Python
  • Data Transformation Rule Implementation in Python
  • Conclusion
  • Points to Remember
6

Designing Data Lake and Executing Data Transformation

  • Introduction
  • Data Lake Concept
  • IoT Real-time Data Streaming
  • Building Data Pipeline to the Raw Zone
  • Transformation Zone of the Data Lake
  • Building KPIs and Metrics
  • Conclusion
  • Points to Remember
7

Implementing Descriptive Analytics Using Pandas

  • Introduction
  • Descriptive Data Analysis
  • Download Wind Turbine Dataset
  • Time Series Analysis
  • Testing Methods for Time Series Data
  • Conclusion
  • Points to Remember
8

Time Series Forecasting and Predictions

  • Introduction
  • Data Smoothing
  • Data Lag Identification
  • Autocorrelation and Partial Autocorrection
  • Forecasting using AR Model
  • Moving Average
  • ARIMA
  • Time Series Feature Extraction 
  • Automatic Time Series 
  • Storing Wind Turbine Predictions
  • Analytical Base Table
  • Conclusion
  • Points to Remember
9

Monitoring and Preventive Maintenance

  • Introduction
  • Condition Monitoring
  • Condition Based Maintenance
  • Corrective Maintenance
  • Preventive Maintenance
  • Text Mining the Product Manual
  • Automating the Creation of Maintenance Ticket
  • Conclusion 
  • Points to Remember
10

Model Deployment on Edge Devices

  • Introduction
  • Objectives
  • Introduction to Edge Computing and Analytics
  • Simulators for IoT Systems
  • Installation and Configuration of Edge Devices
  • Installation and Configuration of FastAPI
  • Model Building and Reuse
  • Expose Models using FastAPI
  • Deploying Machine Learning Model
  • Concept of Continuous Learning
  • Concept of Adaptive Learning
  • Conclusion
  • Points to Remember
11

Understanding Edge Computing with MicroPython

  • Introduction
  • Concepts of Edge Computing
  • Concepts of Edge Analytics 
  • Introduction to Edge Platform
  • Data Flow from Edge to Cloud 
  • Use Cases for Edge Analytics
  • MicroPython for Edge Computing
  • Invoking ML Models using MicroPython
  • Conclusion 
  • Points to Remember
12

IoT Analytics for Self -driving Vehicles

  • Introduction 
  • CRISP-DM Framework
  • Business Understanding of Self-driving Vehicles
  • Data Collection and Understanding
  • Data Preparation and Feature Engineering
  • Modeling and Evaluation
  • Deployment of Machine Learning Models
  • Conclusion 
  • Points to Remember

IoT Data Analytics using Python

$279.99

Buy Now

Related Courses

All Course
scroll to top